模拟GreenPaks.
Upcoming event - Apr 28
5 Configurable Mixed-Signal /Op-Amp circuits to Inspire your next Design
能耗低、小型化和功能onal integration are the main trends in modern consumer electronics. Analog GreenPAK products perfectly accomplish these requirements.
Embedded high performance analog blocks, such as operational amplifiers, can be configured and controlled by customer-defined logic functions to implement various Wake/Sleep scenarios as well as improve the accuracy. All macrocells are packed in one IC to achieve high integration level of common analog and digital components.
模拟GreenPak是:
气体传感器模拟前端
Analog Front-End for Bridge Sensors
具有偏移和增益修剪的仪表放大器
可调模拟过滤器
照片二极管的模拟前端
三角波发生器具有频率尺寸
使用力敏感电阻传感器更换按钮
Thermal Protection with Trimmable Threshold
Other size/price critical analog circuits
相关链接
Product |
描述 |
亚博国际官网平台网址
|
---|---|---|
Configurable mixed-signal IC with operational amplifiers, digital rheostats, EEPROM and a wide set of analog and digital macrocells | 传感器接口,可编程增益放大器,仪表放大器,便携式和手持电子产品,工业电子,家电和物联网 | |
Dual channel 375 nA rail-to-rail input/output CMOS operational amplifier | Battery-powered devices, portable devices, wearable products, sensors, medical monitors, smoke detectors, active RFID readers, energy harvesters | |
Quad channel 375 nA rail-to-rail input/output CMOS operational amplifier | Battery-powered devices, portable devices, wearable products, sensors, medical monitors, smoke detectors, active RFID readers, energy harvesters |
PN. | Special Feature | GPIO. | 名义VDD. (V) |
ACMP. | DCMP/PWM | 最大限度。CNT/DLY | 最大限度。luts. | 最大限度。达夫 | 管道 Delay |
progr。d | osc. | COM。界面 | 包装尺寸(mm) | Socket | 文件 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SLG46127 | 2x P-FET | 6 | 1.8 - 5.0 | 2 | - | 4 | 10 | 4 | 8-stage | 1 | RC OSC. | - | 1.6 x 2.0 mm | MSTQFN-16 (#1) | Documentation |
SLG46580 | ASM我愿意 | 9 | 2.5 - 5.0 | 4 | - | 5 | 16 | 9 | 16-stage | 1 | Conf。osc.LP OSC | I²C. | 2.0 x 3.0 mm | STQFN-20 (#3) | Documentation |
SLG46582. | ASM我愿意 | 9 | 2.5 - 5.0 | 4 | - | 5 | 16 | 9 | 16-stage | 1 | Conf。osc.LP OSC | I²C. | 2.0 x 3.0 mm | STQFN-20 (#3) | Documentation |
SLG46583 | ASM我愿意 | 9 | 2.5 - 5.0 | 4 | - | 5 | 16 | 9 | 16-stage | 1 | Conf。osc.LP OSC | I²C. | 2.0 x 3.0 mm | STQFN-20 (#3) | Documentation |
SLG46585. | ASM我愿意DCDC. | 9 | 2.5 - 5.0 | 4 | - | 5 | 16 | 9 | 16-stage | 1 | Conf。osc.LP OSC | I²C. | 3.0 x 3.0 mm | MSTQFN-29(#1) | Documentation |
SLG46533. | - | 18 | 1.8 - 5.0 | 4 | - | 7 | 25 | 15 | 16-stage | 1 | Conf。osc.戒指OSC.Crystal OSC | I²C. | 2.0 x 2.2 mm 2.0 x 3.0 mm |
MSTQFN-22(#1)STQFN-20 (#1) | Documentation |
SLG46538. | ASM双供货 | 17 | 1.8 - 5.01.8 - VDD1 | 4 | - | 7 | 17 | 8 | 16-stage | 1 | Conf。osc.RC OSC.Crystal OSC | I²C. | 2.0 x 3.0 mm 2.0 x 2.2 mm |
STQFN-20 (#2)MSTQFN-22(#2) | Documentation |
SLG46538-A. | ASM双供货 | 17 | 1.8 - 5.01.8 - VDD1 | 4 | - | 7 | 17 | 8 | 16-stage | 1 | Conf。osc.RC OSC.Crystal OSC | I²C. | 3.5 x 3.5 mm | TQFN-20 | Documentation |
SLG46537. | ASM | 18 | 1.8 - 5.0 | 4 | - | 7 | 17 | 8 | 16-stage | 1 | Conf。osc.RC OSC.Crystal OSC | I²C. | 2.0 x 3.0 mm 2.0 x 2.2 mm |
STQFN-20 (#1)MSTQFN-22(#1) | Documentation |
SLG46536. | - | 12 | 1.8 - 5.0 | 3 | - | 7 | 25 | 15 | 16-stage | 1 | Conf。osc.戒指OSC.Crystal OSC | I²C. | 2.0 x 2.2 mm | STQFN-14(#2) | Documentation |
SLG46535. | ASM双供货 | 11 | 1.8 - 5.01.8 - VDD1 | 3 | - | 7 | 17 | 8 | 16-stage | 1 | Conf。osc.戒指OSC.Crystal OSC | I²C. | 2.0 x 2.2 mm | STQFN-14(#3) | Documentation |
SLG46534 | ASM | 12 | 1.8 - 5.0 | 3 | - | 7 | 17 | 8 | 16-stage | 1 | Conf。osc.RC OSC.Crystal OSC | I²C. | 2.0 x 2.2 mm | STQFN-14(#2) | Documentation |
SLG46170 | - | 12 | 1.8 - 5.0 | - | - | 8 | 17 | 6 | 16-stage | 1 | RC OSC. | - | 2.0 x 2.2 mm | STQFN-14(#2) | Documentation |
SLG46169. | - | 12 | 1.8 - 5.0 | 2 | - | 7 | 18 | 6 | 16-stage | 1 | RC OSC. | - | 2.0 x 2.2 mm | STQFN-14(#2) | Documentation |
SLG46108 | - | 6 | 1.8 - 5.0 | - | - | 4 | 10 | 4 | 8-stage | 1 | RC OSC. | - | 1.0x 1.2 mm | STQFN-8(#1) | Documentation |
SLG46121 | 双供货 | 9 | 1.8 - 5.01.8 - VDD1 | 2 | - | 4 | 16 | 8 | 8-stage | 1 | RC OSC. | - | 1.6 x 1.6 mm | STQFN-12 (#2) | Documentation |
SLG46621 | 双供货8位ADC | 17 | 1.8 - 5.01.8 - VDD1 | 6 | 3/3 | 10 | 26 | 12 | 16-stage 2 | 2 | LF OSC戒指OSC.RC OSC. | spi. | 2.0 x 3.0 mm | STQFN-20 (#2) | Documentation |
SLG46620 | 8位ADC | 18 | 1.8 - 5.0 | 6 | 3/3 | 10 | 26 | 12 | 16-stage 2 | 2 | LF OSC戒指OSC.RC OSC. | spi. | 2.0 x 3.0 mm 6.5 x 6.4 mm |
STQFN-20 (#1)TSSOP-20 (#1) | Documentation |
SLG46620-A | 8位ADC | 18 | 1.8 - 3.3 | 6 | 3/3 | 10 | 26 | 12 | 16-stage 2 | 2 | LF OSC戒指OSC.RC OSC. | spi. | 6.5 x 6.4 mm | TSSOP-20 (#1) | Documentation |
SLG46117 | 1x P-FET | 7 | 1.8 - 5.0 | 2 | - | 4 | 10 | 4 | 8-stage | 1 | RC OSC. | - | 1.6 x 2.5 mm | STQFN-14(#1) | Documentation |
SLG46116 | 1x P-FET | 7 | 1.8 - 5.0 | 2 | - | 4 | 10 | 4 | 8-stage | 1 | RC OSC. | - | 1.6 x 2.5 mm | STQFN-14(#1) | Documentation |
SLG46140 | 8位ADC | 12 | 1.8 - 5.0 | 2 | 3/3 | 4 | 16 | 6 | 16-stage | 1 | LF OSC戒指OSC.RC OSC. | spi. | 1.6 x 2.0 mm | STQFN-14(#1) | Documentation |
SLG46120 | - | 10 | 1.8 - 5.0 | 2 | - | 4 | 16 | 8 | 8-stage | 1 | RC OSC. | - | 1.6 x 1.6 mm 2.0 x 2.0 mm |
STQFN-12(#1) | Documentation |
SLG46110 | - | 8 | 1.8 - 5.0 | 2 | - | 4 | 10 | 4 | 8-stage | 1 | RC OSC. | - | 1.6 x 1.6 mm | STQFN-12(#1) | Documentation |
SLG46722 | - | 18 | 1.8 - 5.0 | - | - | 8 | 17 | 6 | 16-stage | 1 | RC OSC. | - | 2.0 x 3.0 mm | STQFN-20 (#1) | Documentation |
SLG46721. | - | 18 | 1.8 - 5.0 | 4 | - | 7 | 18 | 6 | 16-stage | 1 | RC OSC. | - | 2.0 x 3.0 mm | STQFN-20 (#1) | Documentation |
SLG46824 | In-System Programmability双供货 | 17 | 2.5 - 5.01.8 - VDD1 | 2 | - | 8 | 19 | 17 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 2.0 x 3.0 mm 6.5 x 6.4 mm |
STQFN-20 (#4)TSSOP-20 (#2) | Documentation |
SLG46826 | In-System Programmability双供货 | 17 | 2.5 - 5.01.8 - VDD1 | 4 | - | 8 | 19 | 17 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 2.0 x 3.0 mm 6.5 x 6.4 mm |
STQFN-20 (#4)TSSOP-20 (#2) | Documentation |
SLG46827-A. | In-System Debug双供货 | 17 | 2.5 - 5.01.8 - VDD1 | 4 | - | 8 | 19 | 17 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 6.5 x 6.4 mm | TSSOP-20 (#2) | Documentation |
SLG46880. | ASM双供货 | 28 | 2.5 - 5.02.5 - VDD1. | 4 | - | 5 | 12 | 5 | 16-stage | 1 | RC OSC.LP OSC戒指OSC.Crystal OSC | I²C. | 4.0 x 4.0 mm | STQFN-32(#1) | Documentation |
SLG46881. | ASM双供货 | 28 | 2.5 - 5.01.0 - 1.8 | 4 | - | 5 | 12 | 5 | 16-stage | 1 | RC OSC.LP OSC戒指OSC.Crystal OSC | I²C. | 4.0 x 4.0 mm | STQFN-32(#1) | Documentation |
SLG46517. | ASM2x P-FET | 16 | 1.8 - 5.0 | 4 | - | 7 | 17 | 8 | 16-stage | 1 | RC OSC.戒指OSC.Crystal OSC | I²C. | 2.0 x 3.0 mm | MSTQFN-28 (#1) | Documentation |
SLG46855 | - | 12 | 2.5 - 5.0 | 4 | - | 8 | 23 | 21 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 1.6 x 2.0 mm | STQFN-14(#1) | Documentation |
SLG46855-A. | - | 12 | 2.5 - 5.0 | 4 | - | 8 | 23 | 21 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 3.0 x 3.0 mm | FCQFN-14(#1) | Documentation |
SLG46867 | 2x P-FET | 10 | 2.5 - 5.0 | 4 | - | 8 | 23 | 21 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 1.6 x 3.0 mm | MSTQFN-20 (#1) | Documentation |
APP亚博娱乐 | 双供货4 Half- / 2 Full- bridgesI/V Regulation | 84 x HV | 2.5 - 5.03.3 - 12.0 | 2 | 0/2 | 5 | 17 | 15 | 16-stage | 1 | LP OSC戒指OSC. | I²C. | 2.0 x 3.0 mm | STQFN-20 (#5) | Documentation |
SLG47004 | Op AmpDigital Rheostat模拟开关自动修剪In-System Programmability | 8 | 2.5 - 5.0 | 3 | 0/0 | 7 | 20 | 18 | 16-stage | 1 | RC OSC.LP OSC戒指OSC. | I²C. | 3.0 x 3.0 mm | STQFN-24(#1) | Documentation |
SLG88103 | Op Amp | 0 | 1.8 - 5.0 | 0 | 0/0 | 0 | 0 | 0 | - | 0 | - | - | 2.0 x 2.0 mm | STDFN-10 | Documentation |
SLG88104 | Op Amp | 0 | 1.8 - 5.0 | 0 | 0/0 | 0 | 0 | 0 | - | 0 | - | - | 2.0 x 3.5 mm | STQFN-20 | Documentation |
SLG46811 | 92 x 8位图案发生器 | 10 | 2.5 - 5.0 | 1(4) | 0/0 | 6 | 18 | 17 | 4 x 8位sh reg | 1 | 戒指OSC. LP OSC |
I²C. | 1.6 x 1.6 mm | STQFN-12(#1) | Documentation |
1个月前
Simulation problem with F(1) macrocell on SLG46880V
张贴了Matthew H.0 points 6 repliesI'm using the F(1) computational macrocell on a SLG46880V device. It looks like when computations are performed using the cell on inputs coming from the dedicated analog comparator pins, and the outputs of the F(1) block are routed to the FSM transition inputs, the states don't transition correctly in the simulation.
当从常规连接矩阵路由输入时,它似乎正常工作。请参阅链接到图像和exaple文件:
https://www.dropbox.com/s/l8loe30ldw3pf7g/f%281%29%20Error%20example.gp6?dl=0.
1个月前
嗨,希纳里再次。我仍然没有任何运气完成我正在尝试的事情,它是在Gven状态中连续监视模拟输入,使用F(1)宏电池执行运行计算,并且当a时触发状态转换满足某些计算条件。一个示例是通过与F(1)单元输入相关联的四个模拟比较器,使用堆栈机器的三位格雷码连持一个例子,然后在三位中的特定位时触发状态转换f(1)输出设置。对于f(1)代码,我有类似的东西:
LOAD4 //将LOAD4输入位推到堆栈OUT2 //复制到OUT2的顶部位,MSB LOAD2 //将LOAD2输入位推到堆栈OUT1 //复制到OUT1中的顶部位,中间位LOAD1 LOAD3 INV //反转顶部堆栈,load3和//上的堆栈上的顶部两个位,将结果返回到顶部OUT0 //复制到OUT0 PUSH0 //顶部位必须为0触发循环指令循环W Delay //返回开始
As you say without a loop statement the F(1) computation is only performed one time on entry to the state. With a loop & delay it looks like in simulation the stack machine enters an infinite loop, the outputs of the F(1) change continously but control is then never returned to the ASM and the transition never happens. Is it possible to do this? Do you have a working example you could share if so? Thank you
1个月前
嗨马修,
Please find attached a working example of the F(1) macrocell. The command sequences are a bit different than yours
亲切的问候
Shivani
Attachment | Size |
---|---|
ACMPS F(1).zip | 8.47 KB. |
3 weeks ago
感谢您的榜样Shivani和Sory在我的回复中延迟,不幸的是,我遇到的问题仍然存在。F(1)单元格进入循环并连续计算4输入和ACMP输入,而不是您示例中的问题。但是,如果我要说f(1)单元的OUT0并将其连接到ASM上的状态转换,它看起来永远不会触发,则循环仍然不确定,控制从未返回到ASM,在那种情况下,在那里状态转换输入仅来自F(1)的输出。
If I connect the OUT0 of the F(1) to both the ASM transition input and the "interrupt" pin on the F(1) then the transition is triggered when OUT0 goes high, I assume because control is returned back and the loop breaks out concurrently with the ASM recieving the transition signal, but this seems like a race hazard and not a partiuclarly useful configuration, anyway, as that connection then persists across all states and all four possible F(1) configurations. I'm assuming this is correct behavior though, once the F(1) enters an infinite loop in a particular state the only way to break out is via an external input to the ASM or using the interrupt pin to force a return of control to the ASM?
1个月前
嗨马修,
Thanks for reaching out. The only time the f(1) Computation Macrocell will begin to execute instructions is when the ASM Macrocell first enters a new state.(You can also find some more useful information in the F(1) macrocell section of the Datasheet)
因此,当输入电压小于ACMP的参考volatge时,ACMP变为低电平,F(1)块停止和ASM保持状态为0.因此,您可以看到过渡。除了OUT0之外,您能否在命令序列中使用延迟命令尝试使用循环命令?因此,每次迭代都通过循环时,监测阈值,并且存在过渡。
Please let me know if this helps
亲切的问候,
Shivani